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INCOMPLETE GAUSS SUMS

D. H. LEHMER

Abstract. Let JV be a positive integer. We are concerned with the sum

m - l

GN(m) = £ J2'"1"1*.
l = o

Thus GN(N) is the ordinary Gauss sum. Previous methods of estimating such exponen-
tial sums have not brought to light the peculiar behaviour of GN(m) for m < N/2,
namely that, for almost all values of m, GN(m) is in the vicinity of the point y/N(l +i)/4.
A sharp estimate is given for max \GN{m)\, depending on the residue of JV modulo 4.
The results were suggested by graphs of GN(m) made for JV near 1000. The analysis
employs the Fresnel integrals and the Cornu spiral whose curvature is proportional
to its arc length.

1. Introduction. If JV is a positive integer, we call the exponential sum

m - l

GN(m) = £ e{2jdv2/Ar) (1)
v = 0

an incomplete Gauss sum in the case when m < N. The complete Gauss sum
GN(N) is well known to be

GN(N) =
0, if JV = 4k + 2,

(2)

Km > JV so that
m = qN + m0 (0 < m0 < JV),

then clearly
GN(m)=qGN(N) + GN(m0).

Thus it is sufficient in studying the behaviour of GN{m) to consider the incomplete
case. The best previous result appears to be that of Hua [1], which in this case becomes

\GN{m)\ = O(JV*+£).
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Our aim in this paper is to give best possible estimates for \GN(m)\ which hold uni-
formly in m when m < JV/2 for the four residues of N (mod 4). In fact four constants
cr, (r = 0,1,2, 3) are found such that

MN = max \GN(m)\=crN*+O(l) (N = r (mod 4)).

That it suffices to treat the cases m ^ (N+l)/2 follows from the identity

GN(m) + GN(N-m + l) = 1 + GN(N). (3)

These results are the consequences of realizing, from graphic experiments with large
N, that almost all the values of GN(m), for N fixed and m < N/2, lie in the neighbour-
hood of a single point in the complex plane, namely y/N(l+i)/4. To illustrate this
phenomenon we define the graph of the sequence

GN(0), GN(1), ..., GN(N). (4)

This directed graph has for vertices the successive terms of (4) and for edges the unit
vectors joining GN(m) to GN(m +1) directed from the former to the latter. Thus the
total length of the graph is N. We show in Figures 1,2, 3,4 these graphs for AT = 1024,
1009, 1026 and 1155 respectively. In each figure, O marks the origin in the complex
plane. In the case of Figure 3 the graph is doubly traversed.

Of course these graphs are in reality piecewise linear, not smooth curves with
continuously turning tangents. However, we shall see that for m = O(N*) the first
m edges closely approximate a clothoid or Cornu spiral whose curvature is propor-
tional to its arclength. This spiral has infinite length and so this comparison of the
graph to the spiral is valid and useful only up to a certain point.

2. Three Lemmas. We use a rudimentary form of the Euler-Maclaurin summation
formula which we develop in three lemmas.

LEMMA 1. Let y(x) be real, continuous, and monotone on the interval 0 < x < m.
Then

V3
I (x2-x + $) £ y(v + x)dx ,

J v=o 54
o

\y(m)-y(0)\.

Proof. Let/?! = (3-V3)/6,p2 = (3+V3)/6, so that

-^ X —X~\~ 1 /6 = \X — Pi) yX — P2J>

and let
r

*/)-JV-*+*:
0

Then
w(0) = w(l) = 0, w(Pl) = -w(p2) = V(3)/108.

Without loss of generality we may take y to be monotone increasing. Let
i

T = f (*2--
0
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FIG. 1 FIG. 2

FIG. 3

Then, taking into account the sign of x2—x+% in [0,1],

Tv < y(y+1) {w(Pl) - w(0)} + y(y) {w(p2) -

V3

w(p2)}

54

Summing over v gives the lemma.
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In the following two lemmas we require the identity

1
9-1/= f {x2-x+\)T.f"iy+x)dx

J v = p
0

f no at, (5)

which is easily obtained by integrating twice by parts.

LEMMA 2. Let f be a real function for which f"(x) is monotone on the interval
p < x < q. Then

9

- /
p

with
V3

108

Proof. Inspection of (5) reveals that

R = -\l. (6)

Applying Lemma 1 with y(x) —f"(p+x) and m = <?— p gives

so the lemma follows from (6). It does not seem to be in the literature [2].

LEMMA 3. Let f be such thatf'(x) is monotone decreasingfor p < x < t, and monotone
increasing for £, < x < q. Let n = [£] and let M be the larger of (/"(«)— /"(£)) an&
f"(n +1) - / " ( 0 - Then the R of Lemma 2 satisfies

\R\ < ^{f"(p)+f"(q)-f"(n + l)-f"(n)} + 1kM. (7)

Proof. The / in (5) can-be written / = I± +I2 + / 3 where
I

h = f (x2-x+i)"Zf"(v+x)dx,
J V = D
0

1

h = J (x2-
0

1

J3 = f (x2-x+$ ^ f"(v+x)dx.
J v=n+l

v = n + l
0
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By Lemma 1,

I'll *s ~ (f"d>)-/"(«)), |/3| < ^ - (/"(«)-/"(»+1)).

Since/"(x) has a minimum at x •= £,,

0^f"(n+x)-f"(O<M (0 < x < 1).
Hence, if we set

then

Hence

u-jt
0

and since

\h(x)\ tSM/2,

)dx+{f

0 « S X < 1 . -

0

J (x2-x+i)dx = 0 and
o

we have
\h\ *k M/12.

The lemma now follows from the fact that

3. Notation and Normalization. Instead of studying GN(m) as defined by (1), we
find it simpler to consider a normalized version gN{m) defined by

gN(m) = 2N~* £ e{2*iv2/JV}. (8)
v = 0

The " scale factor " 2/y/N does not change the aspects of the graphs depicted in
Figures 1, 2, 3, 4. The length of each edge is now 2N~i and for all N the complete
graph gj,(JV— 1) can now be covered by a disk of radius VS.

The relation (3) now becomes, in view of (2),

gNVn)+gN{ -m- ) - + •

2 + 2i, N = 4k,
2, N = 4k+\,
0, JV = 4A;+2,

2i, N = 4k+3.

From this we can find the exact values of gN(m) at the midpoint of its graph,

g4k(2k-l) = l+i,

g4k+1(2k) = l+N-\

gu+2(2k+l)=0,

g.k+3(2k+l) = i +

as follows:

(9)

(10)

(11)

(12)
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We use the following notation and facts concerning the Fresnel integrals and the
Cornu spiral. For the former we use

s s

C(s)= f cos(nu2/2)du, S(s) = f sin (nu2/2) du. (13)

0 0

For the spiral we take the curve whose parametric equations are

x = C(s), y = S(s) ( - oo < s < oo).

The choice of the letter s as a parameter is appropriate, since

(dx)2 + (dy)2 = {(cos(7rs2/2))2+(sin(7T52/2))2} (ds)2 = (ds)2,

so that s is the actual arclength distance of the point (x, y) from the origin of co-
ordinates. If \}/ is the angle through which the tangent line at the point P : (x, y) has
turned since P left the origin, we have

taniA = dy/dx = sin (ns2/2)/cos (?rs2/2) = tan (ns2/2),

so the intrinsic equation of our Cornu spiral is i// = ns2/2. Its radius of curvature p
is given by

ds ds
P =

dy nsds

Thus the curvature at P is n times the arclength distance of P from the origin.

4. The case m = O(N*). We begin by examining g${m) for m = O(N*). To
this effect we define

co = co(x) = 2nx2/N, F^x) = cosco, F2(x) = sinco,
so that

F/Oc) = - 4UXN-1 sin co, (14)

F2'(x) = 4nxN~x cos co, (15)

2cocosco}, (16)

F2"(x) = 4nN~ * {cos a - 2co sin co}, (17)

FS'ix) = - (AnN-iyxQ cos co - 2<o sin co},

F2'"(xX = - (4JTJV~ X ) 2 X{3 sin co + 2co cos co},

F/4)(x) = (47tJV-1)2{12co sin co + (4co2 - 3) cos co},

F2
w(x) = (4^iV- 1 ) 2 {- 12co cos co + (4co2 - 3}sinco}.

Let cot = 0-98824073 and co2 = 2-17462603 be the least positive solutions of

cot co = 2co/3 and tan co = — 2co/3,
and set

Lx = (NcoJ2n)i = 0-39658971

L2 = (Nco2l2nf = 0-58830475

L3 = (N/2)* = 0-70710678 JN.
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Then
Fi'(x) is monotone decreasing for 0 < x < Lu

Fi'ix) is monotone increasing for Lt < x < L3,

F2"(x) is monotone decreasing for 0 < x < L2,

F2"(x) is monotone increasing for L2 < x < L3.
We now have

THEOREM 1. Ifm^L3 and N 5= 100, then

£ cos(2nv2/N) - f cos (2nt2/N)dt
v = 0 J

0
m

£ sin (2TTV2/JV) - f sin (2nt2/N)dt
v = 0 J

< 1 +N~\

Proof. First suppose m < L t . We apply Lemma 2 to the case of f(x) =
p = 0, <j[ = m. We then conclude that in view of (14) and (16)

v = 0
cos(2nv2/N)- cos (2nt2/N) dt

122V 108 12V \ 2V

< 1 + -A-2V"* + |2V- 1 < 1 + 2V"*,

since m < L± and 2V > 100.
Next suppose Lx < m < L3. We apply Lemma 3 to the case of f(x) = Ft(x),

p = 0, £ = L 1 ; g = L3. Since ^ is in this case a function of 2V it is difficult to specify
n = [£]. So we write

/"(P) +/"(«) - /" («) - / " ( « + 1) < /"(p) +/"(«) - 2/"(£),

and use the facts that
/"(«)-/"© </"«-l)-/"(O

and that /"(£ + 1) - /" ({) = (l/2!)/<4)(0 ± / ( 5 ) ( l + 0)/6. That is we may take
M < (l/2!)/(4)(£) < 814/2V2. The application of Lemma 3 now gives

£ cos (2nv2jN) - f cos (2nt2/N)dt
v = 0 J

Anm
< i + i + ̂ 7 +

< 1 +•

122V 108

; , 118 34

- 2F1"(L1)} +
34

JV2

2V 2V2

since m < L3 and 2V > 54.
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This proves the first inequality of the theorem. For the second inequality, if
m < L2, Lemma 2 gives us with/(x) = F2(x), p = 0, q = m, using (15) and (17),

m

Z sin (27tv2/JV) - f sin (2nt2jN)dt
= o J

0

nm J3 An
< i + + — (2 + 4nm2/N)

3/V 108 JV

< \ + 0-6161JV-* + 0-8766JV"1

since JV > 100.

Next suppose L2 < m < L3. Applying Lemma 3 as before, we get
m

£ sin (2nv2/N) - f sin (2nt2/N)dt
i = 0 J

0

< i + 0-7405JV-* + 1-672JV-1 + 91JV"2

since JV > 100. This completes the proof of Theorem 1.
Combining Theorem 1 with the normalization and notation of (8) and (13), we

have

THEOREM 2. / / m < s/(N/2) and N > 100, then

>)| < (101/40)//-*.

Proof. By Theorem 1, there exist 0X and #2, both less than 1 in absolute value,
such that

e27li,-vViv _ f Q2nitVNdt = 0 i ( 1 + N-iy + i02Q + N~k) = A ( 1 8 )

v = 0 J
0

We have |A|2 < | (1 + ^JV"* + fJV"1), so that

|A| < V(5)/2(l + fJV"* + fiV"1) < 101/80,

since JV ^ 100. If we multiply (18) by 2JV~* and take absolute values of both sides,
replacing t by ^JV*M, we getthe theorem.

5. The case ^/(N/2) < m < JV/4. Having considered the early part of the graph
of gN(m), that is for m < y/(N/2), we can now locate the rest of the graph. We begin
with

THEOREM 3. Let F be the circle with centre at the point

Q : (C(V2), S(y/2) - (V27T)-1) = (0-5288892, 0-4888933)

and radius l/y/2(n) + 101/40 JV"*. Then for N ^ 100, that part of the graph of
gN(m) for which y/(N/2) < m < JV/4 lies within F.
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Proof. Let T' be the circle of curvature of the Cornu spiral at the point P where
s = J2. Here ij/ = n so the tangent at P is horizontal. The radius of F ' is

p =
and so the centre of F' is Q.

In going from the vertex gN(m) to the next vertex

gN(m + 1) = gN(m) + e2«

the new edge suffers a rotation, with respect to the previous edge, of

5(m) = 2n/N {(m + I)2 - m2}n= 2n/N (2m + 1).

For brevity we call this angle the departure of the wth vertex-of the graph.
Let m0 = W(N/2)]. Then

d(m0)

and by Theorem 2 the vertex gN(m0) is within the distance (101/40)^""* of the point P
on the spiral, so this vertex is inside F. If further departures 5(m) for m > m0 did
not increase steadily to it, but instead remained fixed at S(m0), the graph would just
barely remain inside F, staying near its circumference. As it is, the successive edges
of the graph turn more and more inward until the graph is oscillating across a small
circle whose diameter is about 2N~*, the common edge length of the graph. Hence
forVW2) < m < N/4,gN(m) lies within F.

The behaviour of the graph gN(m) for iV/4 < m < N/2 is, to put it roughly, an
unwinding of the first quarter of the graph. To discuss this it is best to consider
separately the four cases of AT modulo 4. We assume that from now on N ^ 100.

6. The cases N = 4k + j , j = 0,2,3.

THEOREM 4. IfN = Ak + 2 then for m < N

\gN(m)\ < 0-9490569 + (101/40) AT*.

Proof. In this case we have for the departure of the wth vertex

2nr
n + 7——, if m = k + r,

2k + 1
8(pi) =

2nr
n — , if m = k — r.

2k + 1

This means that after m reaches k = (JV - 2)/4 the graph gN(m) exactly retraces
itself until it reaches the origin. The maximum distance from the origin of a point
on the Cornu spiral is 0-9490569 which is achieved at s = 1-2093781 where
\j/ = 2-297439 and p = 0-2632013. Applying the inequality of Theorem 2 completes
the proof.

THEOREM 5. IfN = 4k + 3andm< N/2, then

max \gN(m)\ = J(l + N~l),

and this is achieved for m = 2k + 1.
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Proof. By (12),

+ 1)1

This is greater than maximum distance 0-9490569 of the incoming spiral, m < JV/4.

THEOREM 6. IfN = 4k and m < JV/2, then

max\gN(m)\ = J2.

Proof. This follows from (9).

7. The case N = 4k + 1. This case is a much more difficult one. One can see
from Figure 2 that there is a point gN((N — l)/2 — m) for m = O(JV~*) at a maximum
distance from the origin. By (8) we have

g4k+1(2k-m) =
v = 0

1 2
e-2nik/N

Applying Lemmas 2 and 3 to the functions

cos {2n(x2 + x)/N} and sin {2n(x2 + x)/N},

we show that this last sum is approximated by the integral

m

0

Setting t + % = %y/(N)u and noting that

S(N-*) = O(N~*),

we find that form = 0(N"*)

\k - m) =r-l - S(2m + 1//V*) - iC(2m -

This shows that this part of the graph closely follows a Cornu spiral centred at
(1 + i)/2 but rotated through n/2, and so g4k+i(2k - m) for V W / 2 < m < JV/4
lies inside a circle of radius (V(2)TC)~1 + O(JV~*) as before. To find the point at the
greatest distance from the origin we must make

{1 - S(u)}2 + {C{u)f

a maximum. This is achieved for u = 0-6136886 and is

1-12900425 = (1-0625461)2.

Hence we have
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THEOREM 7. IfN = 4k + landm< N/2, then

max \gN(m)\ = 1-0625461 + O(AT*),
0<m<2fc

and this is achieved for

m= [2k + \ - 0-3068442VN].

We have spared the printer and the reader the details of the proof of the above
theorem. If the reader wishes to apply the above methods he will find the tables of
the Fresnel integrals by the Russian Academy [3] very useful.
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